Some Properties of Playoff Systems for NCAA I-A Football

David H. Annis and Samuel S. Wu
Operations Research Department, Naval Postgraduate School and
Department of Biostatistics, University of Florida

ABSTRACT

Properties of various knockout tournament designs are discussed and theoretical results presented. Potential playoff schemes for Division I-A football are examined via simulation studies. Several metrics, differing in number, selection and seeding of playoff teams, are used to assess the relative merits of playoff scenarios. Most suggest that college football would benefit from a limited playoff system. Interestingly, for the class of playoff systems examined, the number of teams influences the performance far more than does the seeding procedure.

KEY WORDS: paired comparisons, tournament, seeding, football

1. INTRODUCTION

College football remains the only Division I-A varsity sport which does not crown its national champion in a post-season tournament. Instead, throughout much of its history, the “national champion” (or champions, in some cases) has been determined by media and coaches’ polls. With the advent of the Bowl Championship Series (BCS) in 1998, a combination of polls and model-based ranking methods has been used to determine two entrants in a championship game. Although some feel that this system represents an improvement over the traditional bowl system, it is not without controversy. A thorough explanation of the BCS system and its shortcomings is given by Stern (2004) and discussed extensively by Billingsley (2004), Colley (2004), Harville (2004), Massey (2004) and Mease (2004).

It is clear that the NCAA’s constant “tweaking” of the BCS system has not been able to determine a champion reliably or equitably. All of these controversies could have been avoided were there a playoff system in place. In light of this, we propose a number of different playoff schemes and investigate their performance via extensive simulation studies. Carlin and Stern (1999) utilize different methods than those given herein to evaluate potential single-elimination college football tournaments.

2. TOURNAMENT DESIGN

We restrict attention to knockout tournaments, in which the loser of each game is eliminated from future competition. The sole unbeaten team remaining at the end of the tournament is the winner. When designing a tournament, one must balance the importance of a strong regular season performance qualifying for the tournament with that of an end-of-season winning streak in the tournament.

2.1 Number of Entrants

Large playoff fields devalue the regular season and can produce championship teams that most would agree were not the “best.” For example, consider the season in which the NCAA expanded the basketball tournament to 64 teams, 1985. Villanova (25-10) won the national championship game over defending champ and top-ranked Georgetown (35-3), after losing both of their head-to-head regular-season meetings. In fact, since the NCAA expanded its basketball tournament to 64 or more teams, only 9 of 20 “national” champions earned their conference’s championship outright.

On the other hand, small playoff fields make it difficult for even top-notch teams to qualify and therefore risk excluding the top teams. For example, in that same 1985 season, Georgetown would not have qualified for a postseason tournament which included only regular-season conference champions – despite finishing with the #1 national ranking and a better overall record, Georgetown (14-2) finished a game behind St. John’s (15-1) in the Big East conference. A good tournament must balance the probability that the top team qualifies with the probability that it wins once the tournament begins.

2.2 Three Seeding Methods

In most tournaments, opponent pairings are not determined at random. Rather, the participants are seeded or assigned to a particular position in the tournament draw based on their perceived merit. Virtually all standard seeding methods accomplish two simultaneous objectives: (1) better teams are rewarded with easier draws than worse teams; and
For tournaments of a given size, a standard, fixed method for seeding a tournament can be defined recursively as follows: assuming no upsets occur, when 2^k competitors remain, opponents satisfy $i + j = 2^k + 1$. Figure 1 gives an example for an eight-team tournament; we will denote this particular seeding by $[[18][45]][[27][36]]$, where $[]$ denotes a head-to-head game. Thus, the top half of the bracket, $[[18][45]]$, contains match-ups between the first and eighth seeds as well as the fourth and fifth seeds, with the winners to play each other in the second round. This traditional method is intuitively appealing and is probably most widely used in tournaments, e.g., in the NCAA basketball tournament. However, the standard seeding is not monotone, i.e., a better, higher-seeded team may have a lower probability of winning the championship than does a weaker, lower-seeded team.

Let $p_{i,j}$ denote the probability that team i defeats team j in a match. The probability matrix, $P = [p_{i,j}]$, is said to satisfy strong stochastic transitivity (SST), as in David (1963), if for each triplet $\{i,j,k\}$, if $p_{i,j} \geq 1/2$ and $p_{j,k} \geq 1/2$, then $p_{i,k} \geq \max\{p_{i,j}, p_{j,k}\}$. SST ensures that for some ordering of teams, P is doubly monotonic, and consequently there is a unique, unambiguous ranking of teams. Hwang (1982) and Schwenk (2000) both present SST preference schemes for which team 2 has a higher probability of winning the tournament than does team 1 under the standard seeding, despite team 1’s superior ability and ostensibly more favorable draw. Each proposes a tournament structure which remedies this deficiency of the standard tournament draw. Schwenk discusses two axioms which “good” tournaments should satisfy:

SR Sincerity Rewarded: A higher-seeded team should never be penalized by being given a schedule more difficult than that of any lower seed.

DC Delayed Confrontation: Two teams rated among the top 2^j shall not meet until the field has been reduced to 2^j or fewer teams.

Figure 2 gives an example of a four-team playoff which violates both conditions. Sincerity is not rewarded since either of the top two seeds would benefit from being seeded third. In addition, confrontation is not delayed since the two best teams face each other immediately rather than in a potential championship game. Both problems are remedied by the exchanging the positions of teams 2 and 4.

In addition to Schwenk’s axioms, we propose explicit conditions on the tournament’s balance.

AB Absolute Balance: Every team must face the same number of opponents in order to win (i.e., there are no byes).

RB Relative Balance: For every pair of teams in the draw, neither should need to face more than one additional opponent than the other in order to win (i.e., no team should receive more than one bye).

Many tournaments are absolutely balanced, however, some, such as the National Football League (NFL) playoffs are merely relatively balanced. In the case of the NFL, six teams from each conference qualify for the playoffs with the top two receiving byes into the second round. The “backward elimination” design in Figure 3 shows why some degree of balance is desirable when seeding tournaments. Although the example satisfies Schwenk’s DC and SR axioms, the lack of balance makes it undesirable. (We note, however, that Schwenk’s desire to minimize favoritism would preclude such a draw.) The
large number of games involving only lower-ranked teams would certainly detract from its commercial appeal. Furthermore, some may complain that the top seeds receive excessive favoritism at the expense of lower ones. Henceforth, we propose tournament designs that satisfy the relative balance axiom and can, therefore, accommodate tournament fields of any size, such as the NFL’s. Although we require only relative balance, ensuing discussions assume absolute balance. They immediately extend to 2^k tournaments by including the necessary number of teams – each having zero ability, and thus being guaranteed to lose – needed to bring the number of entrants to 2^k for some positive integer k. (In practice these games are simply byes.) To seed $n = 2^k$ teams, Schwenk (2000) defines k cohorts with cohort C_i ($1 \leq i \leq k$) consisting of seeds $\{2^i - 1 + 1, \ldots, 2^i\}$ and randomly places teams within each cohort. His procedure can be thought of as randomly assigning the seeds in each cohort to the teams of which it is comprised and subsequently following the standard, fixed draw. He calls this cohort randomized seeding, and proves that it produces the tournament which is most equitable (as compared to a truly random tournament) subject to the dc and sr axioms. Figure 4 gives an eight-team illustration. The cohorts are $C_1 = \{1, 2\}$, $C_2 = \{3, 4\}$ and $C_3 = \{5, 6, 7, 8\}$. Teams 3 and 4 will be randomly placed in the two C_2 slots; and teams 5 through 8 in those reserved for C_3. Due to the complete randomization in the other cohorts, equivalent draws result in deterministically placing teams 1 and 2 in either of the C_1 positions.

Hwang (1982), on the other hand, eschews the idea of favoritism and focuses on monotonicity so that the probability of a given team winning the tournament exceeds the maximum of the probabilities of those teams seeded below it. He does this by proposing that teams be reseeded after each round of competition such that the highest remaining seed faces the lowest, the second-highest faces the second-lowest, and so forth. For example, suppose in an eight-team draw, the first round winners are $\{1, 4, 6, 7\}$. Under a fixed tournament seeding (see Figure 1), the best remaining teams (1 and 4) would face in the semi-finals as would the worst two. This method ensures not only that one of the two best remaining teams is eliminated, but also that one of the two worst advances to the finals. Hwang’s method results in more appealing semi-final matches, [[17][46]], as evidenced in Figure 5. While Schwenk’s procedure minimizes favoritism accorded the top seeds, Hwang’s tends to maximize it.

3. SIMULATION METHOD

Simulation studies were used to test the effectiveness of each of the proposed tournament constructions. In all cases, games were considered to be independent Bernoulli trials with probabilities depending on
the teams involved and the venue.

3.1 Parametric Strength Model

Bradley and Terry (1952) impose additional structure on the sst probability matrix by positing that each team has an inherent ability, $\xi > 0$, and that given those abilities, the probability that team i defeats team j is

$$p_{i,j} = \frac{\xi_i}{\xi_i + \xi_j}. \quad (1)$$

The canonical parameterization is on the log-odds scale, for which

$$\log(\text{odds})_{i,j} = \log \left(\frac{p_{i,j}}{p_{j,i}} \right) = \log(\xi_i) - \log(\xi_j) = \alpha_i - \alpha_j,$$

where $\alpha = \log(\xi)$. Note that since the α parameters are unique up to an additive constant, a constraint is required to define a unique solution. We choose to let $\sum \alpha = 0$. In addition, home-field advantage can be included as an offset in the generalized linear model. The probability that i defeats j at home is, therefore,

$$p_{i,j} = \frac{e^{\delta \xi_i}}{e^{\delta \xi_i} + e^{\delta \xi_j}} = \frac{e^{\delta \xi_i}}{e^{\delta \xi_i} + \xi_j}, \quad (3)$$

$$\log(\text{odds})_{i,j} = \alpha_i - \alpha_j + \delta. \quad (2)$$

Agresti (1990, ch. 10) illustrates this model for baseball games. Occasionally, I-A teams play against teams from lower divisions: I-AA, II, etc. Rather than discard these games (which would benefit those division I-A teams which lost to lower-division opponents), we choose to include a composite “non I-A” team as the 118th team. (In 2004, there were 117 division I-A teams.)

Although it is conceptually straightforward and elegantly simple, the Bradley-Terry model is often inappropriate for college football data, as the maximum likelihood estimates for unbeaten (winless) teams are infinite (zero). This results in predicting an undefeated team will never lose a future game, while a winless team will never win. Davidson and Solomon (1973) take a Bayesian approach to the Bradley-Terry model and introduce a class of conjugate prior distributions of the form 4.

$$\pi(\xi) \propto \prod_{i < j} \left(\frac{\xi_i}{\xi_i + \xi_j} \right)^{w_{ij}} \left(\frac{\xi_j}{\xi_i + \xi_j} \right)^{w_{ji}} \quad (4)$$

The prior distribution may be interpreted as outcomes of “hypothetical” games between teams, where w_{ij}^0 represents the number of prior wins for i against j. Degenerate solutions (i.e., infinite or zero-valued MLEs) can be avoided by careful choice of prior distribution. One such choice fixes $w_{ij}^0 = w^* > 0$ for all $i \neq j$.

Since this choice of prior contains no information about the home-field advantage parameter, δ, it can be viewed as a neutral-site, round-robin with total weight equal to one game per team. While preferring no team over another, this prior is informative in the sense that it shrinks all teams toward equality and, therefore, incorporates the prior belief that no team is infinitely better (or worse) than others. For our simulations, $w^* = 1/[2(n - 1)]$. Thus, each team begins the season with one-half win and one-half loss.

3.2 Simulation Studies

Unfortunately, teams’ rankings and their probabilities of defeating potential opponents are unknown. Therefore, to assess various playoff systems, we use a number of simulation studies with the true parameters based on estimates from the 2004 college football season. To mitigate the season-specific features of these simulations, different variations of the approach were investigated.

Simulated realizations of the 2004 Division I-A college football season were generated by sampling from an approximation to the predictive posterior distribution for the parameter estimates. The Laplace approximation (Tierney and Kadane, 1986) was used to simplify implementation. Season-specific parameters, $\alpha = \log(\xi)$ and δ, were generated from a multivariate normal distribution with the appropriate mean and covariance. Once the parameters were drawn for that season, games were simulated as independent Bernoulli trials with probability of the home team winning given by δ; for neutral site games probabilities followed 1. Four simulations were conducted, each consisting of 10,000 seasons. They differ in the manner in which the parameters were generated and game probabilities determined.

- **Posterior**: The first simulation was conducted by sampling from a normal approximation to the joint posterior distribution of (α, δ).

- **Shrunk Posterior**: Game probabilities were determined by $\log(\text{odds})_{i,j} = (\alpha_i - \alpha_j + \phi \delta)/2$, where ϕ is an indicator which is zero for neutral site games and one otherwise. This shrinks the probabilities toward one-half, making up-
sets more likely than in the standard formula-

• **Permuted Posteriors:** To ensure that the ob-
served behavior was due to the proposed tour-
ament designs and nothing particular to the
2004 schedule, we permuted the team IDs af-
ter generating parameters. Thus, although the
schedules were nominally identical (e.g., Florida
still plays Georgia) the strength parameters
could correspond to other teams. An advantage
of this scheme over a completely random sched-
ule is that it preserves the conference structure
of college football that makes comparing teams
from different leagues difficult. Two variants of
this approach were used.

I. Teams were grouped into BCS and non-
BCS teams, and strengths were permuted
within groups.

II. The three largest posterior modes (USC,
Oklahoma and Auburn) and the three
smallest (Ball St., Western Michigan and
Central Florida) were exchanged. Subse-
quently, the resulting parameters were per-
muted within groups (as in I).

It is not uncommon for two (or more) teams to tie
for their regular season conference or, in the case of
split-conferences, division title. In such cases, the
following tie-breaking system was employed to de-
termine which team would be named conference or
division champion. This designation becomes im-
portant for determining participants in conference
championship games as well as for “automatic” se-
lection of teams in the BCS.

1. Conference win/loss record
2. Division win/loss record among tied teams
3. Head-to-head win/loss record among remaining
tied teams
4. Fewest overall losses among remaining tied
teams. This was chosen, as most conferences
(ACC, Big East, Big-XII, SEC) use the BCS
rankings at some point in their tie-breaking pro-
cedures, and the BCS rankings are heavily de-
pendent on polls, which favor teams with fewer
losses.
5. Best “computer ranking” using a posterior es-
timate from the Bradley-Terry model and the
simulated season’s results.

4. **SIMULATION RESULTS**

4.1 **Comparison of playoff sizes**

Four tournament sizes (one, two, four and eight
teams) were investigated. The one-team tournament
is trivial and crowns the national champion based on
estimating the best team after the regular season.
The two-team playoff is essentially what the NCAA
currently uses in Division I-A football. The BCS is
designed to match the two best teams at the end of
the regular season in the BCS championship game.
Many have suggested a “plus one” system, whereby
the two best teams after the bowl games would play
for the national championship. This scheme is anal-
ogous to a four-team playoff, and would presumably
reconcile situations encountered in 2003 and 2004
where there was little separation between the top
three teams. Though many pundits have touted this
idea over the last two seasons, this system is far from
perfect. In years where the national champion was
undisputed and the only remaining unbeaten, such
as Oklahoma in 2000 and Miami (FL) in 2001, re-
quiring a unanimous top-ranked team to play one
more game increases the chance of an upset and an
inferior team being dubbed #1. Finally, an eight
team playoff was examined. Given the reluctance of
the NCAA to implement any playoff system, play-
offs containing more than eight teams were consid-
ered impractical, and deemed beyond the scope of
this study.

All tournament simulations assumed that post-
season games were played on neutral sites as are the
current bowl games. Five tournament fields were ex-
amined: a trivial, one-team playoff (Top 1), a two-
team playoff (BCS 2), a four team-playoff (Top 4)
and two eight-team playoffs (Top 8 and 6 Plus 2).
For a fixed tournament field, three methods for each
playoff bracket were considered: fixed, Schwenk
and Hwang. For one- and two-team playoffs, there is no
difference in the methods. For a four-team playoff,
fixed and Hwang reseeding are identical. However,
for the eight-team playoff, each yields a different re-
result.

Eight-team playoffs had the highest chance of in-
cluding the true #1 team, which should not come as
a surprise, with the “Top 8” tournament slightly out-
performing the “6 Plus 2” configuration. The drop-
off between the eight- and four-team playoffs, while
substantial, is much less than the drops to two or
one team. Results of the shrunk simulation matched
those of the regular simulation relatively, although
the absolute performance of all methods was worse
(as would be expected). Finally, the results of per-
muted simulations matched the results of the regu-
lar simulation qualitatively, indicating that schedule likely does not influence the findings substantially.

The eight-team playoffs also maximized the probability of the best team winning the championship; however, the difference between the eight- and four-team playoffs was slight. This can be explained by noting that it is generally more difficult for the best team (as well as for any team) to win a larger playoffs than a smaller one. Although large playoff fields reduce the chance of the best team being left out, they require more consecutive wins once a team has qualified.

Since the current system is designed to create the best championship game, a number of "championship game metrics" were used to test viability of playoff designs. They were: the worst true rank of a team in the championship game, the best true rank of teams excluded from the championship game and the probability of the true #1 and #2 teams meeting in the championship game. Because a championship game requires two competitors, the one-team playoff was excluded from these comparisons.

Regardless of simulation method, the two-team playoff is the poorest choice. For all metrics and simulations methods, all four- and eight-team playoffs produced more desirable results (smaller true rank of championship qualifiers, larger true rank of teams excluded, and larger probability of #1 vs. #2) than the two-team playoff. Therefore, if the NCAA strives for the "best" championship game, one could argue that any reasonable system is better than their current one.

4.2 Comparison of seeding methods

Although the theoretical properties of seeding methods require that the true ordering of teams be known, in reality, rankings must be estimated. Seeding will not necessarily achieve perfect agreement with underlying ability. Despite this complication, the Hwang method still maximizes the probability of the true #1 team (not necessarily the top seed) winning the tournament, as one might expect. Conversely, cohort seeding results in somewhat reduced probabilities of the top team winning. The standard fixed seeding produces results somewhere between these extremes. It is interesting to note that, empirically, even when true ranks are unknown (and seeding, therefore, is imperfect), the Hwang method tends to maximize favoritism, while the Schwenk method tends to minimize it. Finally, the choice of seeding methods had far less impact on the playoff performance than did the tournament size. This could be due, in part, because seeds are estimated (based on team performance in a short regular season) rather than given. Another potential explanation is that only "reasonable" seeding methods were tested. The probability of the top-seed winning can be drastically increased by use of "unfair" seeding, such as [[12][34]] [[23][45]], or drastically decreased, e.g., if seeding follows [[12][34]] [[56][78]].

5. DISCUSSION

Much of the literature focusing on knockout tournaments focuses on properties of the tournament design given known probability matrices (see, e.g., David, 1963; Hartigan, 1968; and Chung and Hwang, 1978). Sears (1963) and Appleton (1995) compare winning probabilities for various tournament schedules. Unlike their circumstance, we have focused on a more difficult situation in which the strengths of the participants are unknown. However, empirical evidence from simulation studies suggests that Hwang’s (1982) reseeding method serves to maximize favoritism for the best team (even if that team was not seeded first) while Schwenk’s (2000) serves to minimize it, with the standard fixed seeding method somewhere in between.

In all cases, the probability of correctly choosing a champion (or final two teams, as might be desired for television purposes) would be improved by enhancing the rating procedure before the playoff – certainly, a perfect rating system would remove all doubt as to which team is the best. With or without playoff, i.e., even with a selection committee approach, a good rating system would help tremendously. College basketball’s reliance on the quirky Ratings Percentage Index (RPI) illustrates that the demand for objective, interpretable rating procedures sometimes exceeds the supply.

Our results indicate that the ability to identify correctly the best team over the course of the college football regular season leaves much to be desired, as evidenced by the low probability of a one-team playoff producing the correct champion. This is likely due to the large number of games played between teams of very disparate abilities, as such contests don’t provide much additional insight into either team’s ability. This view is furthered by noticing that, despite requiring the eventual champion to win three consecutive games against top competition, the eight-team tournaments showed the highest probability of correctly identifying the best team. A compromise between the two extremes is the "plus one" system advocated by many in the popular media. Such a system would approximate a four-team tournament, which yields a probability of correctly
determining a champion almost equal to that of the eight-team fields, but requires substantially fewer changes to the status quo.

REFERENCES

